Глиссирование моторных лодок. Без формул.

«Блинчики», которые мы в далеком и не очень  детстве, пускали камушками по водной глади — ни что иное, как режим глиссирования.  Конечно, вы помните, что камешек должен иметь плоскую поверхность, причем, желательно, с обоих сторон.

Плоская поверхность, которая соприкасается с водной поверхностью — это «малая килеватость» — обязательное условие для глиссирования. Очевидно, что  абсолютно плоское днище лодки, с нулевой килеватостью,  имеет меньшее сопротивление и наивысший коэффициент для глиссирующего режима.

Другое дело, что передвижение на плоскодонке, при, даже небольшом волнении, довольно хорошо встряхнет мозги, а кроме того, чревато разрушением корпуса судна из-за сильных ударных нагрузок. Мореходность подобного корпуса, так же лучше не рассматривать.  Зато мощность лодочного мотора, для перехода в режим глиссирования, будет минимальной.  Следовательно, для небольших водоемов, с вечным штилем, можно выбирать  плоскодонную лодку с менее мощным, а значит, и более дешевым лодочным мотором.

Как только появляется небольшая волна на более крупных озерах и заливах, для глиссирующей лодки существует, на данный момент, самый компромиссный вариант ( не считая, конечно, многокорпусных судов, экзотических моделей корпусов и, конечно же, полуглиссирующих катеров и яхт ) — это корпус с переменной килеватостью.  Так называемое, «глубокое «V» в носовой части, которое плавно переходит в более плоскую поверхность ближе к транцу лодки.  Такой закрученный корпус позволяет увеличить мореходность и снизить ударные  нагрузки при прохождении через волну.

Острые скулы на корпусе, в носовой ее части, работают над отсечением волны. Кормовую часть днища так же нельзя делать совсем плоской, так как это сильно увеличит рыскливость  лодки и увеличит радиус циркуляции. Значит, резкий разворот может быть просто опасен.

Совершенно не хочется загружать статью сложными формулами и длинными расчетами из мореходных университетов. Нам просто необходимо вникнуть в суть процесса.

Глиссирование — это режим передвижения, когда корпус лодки перестает «плавать».  Во время «плавания»,  на корпус действует архимедовская сила выталкивания. Если позволяет кострукция (малая килеватость ) и центр тяжести (правильная развесовка), то, при достижении необходимой скорости, корпус судна начинает уже поддерживать набегающий поток воды. Значит, лодка движется уже, в том числе, и за счет гидродинамических сил. А значение силы Архимеда, в этом случае, существенно снижается. Общепринятым является значение не более 50%.

Вспомните камешек или воднолыжника — сила Архимеда в случае глиссирования крайне мала. И камешек, и воднолыжник без спасжилета,  обычно, тонут. В статическом состоянии.

Килеватость на транце имеет, конечно, свой предел, после которого, корпус лодки перестает быть глиссирующим.

Лодка с водоизмещающими обводами, имеет гораздо большую килеватость на протяжении всего корпуса, а скулы в носовой части имеют более плавные обводы. Ведь выйти в режим глиссирования ей уже не позволяет отсутствие плоскостей в кормовой части, играющие роль крыла. Поэтому, такой лодке приходится уже раздвигать перед собой водную массу, а не «лететь» над ней.

Водоизмещающий корпус имеет предел скорости, ограниченный Числом Фруда — основоположника теории корабля. Формулы, конечно, мы писать никакие не будем.

Ограничение скорости напрямую зависит от длины корпуса лодки. Ведь помимо сопротивления, которое оказывает сила трения, львиная доля энергии тратится на образование  волн.

Как не удивительно, но океанский лайнер и рыболовная лодка, при движении с одинаковой скоростью, образуют одинаковую длину волны. При увеличении скорости, растет и длина волны. Учитывая длину корпуса лайнера, можно представить, сколько таких волн пройдет вдоль него. А вот размер рыболовной лодки может оказаться, на этой скорости, меньше длины волны, которую она сама и образует.

Волнообразование начинается, разумеется, с носа лодки. Поэтому, в какой-то момент, получится, что лодка находится между двух волн, прямо у их подошв. При этом она пытается взобраться на носовую волну. Увеличение скорости в таком случае не поможет. Это приведет только к резкому увеличению потребления топлива двигателем и дифферента на корму. Из-за увеличения высоты волны.

Лодка в три раза длиннее, уже будет располагаться на трех таких Глиссирование моторных лодок - водоизмещающий режимволнах, а значит, сможет идти намного быстрее, пока их количество не сократится до двух. Отсюда выражение — «длина бежит».

Закон Фруда является неопровержимым и основным в гидродинамике. Это мы рассмотрели варианты с водоизмещающими корпусами судов.

Имей лодка глиссирующие обводы и достаточную мощность лодочного мотора, она смогла бы перейти через гребень этой носовой волны. Так начался бы режим глиссирования.

Сам процесс переваливания через носовую волну, образованную лодкой, носит название переходного режима. Для его преодоления, требуется большая мощность лодочного  мотора, чем для его поддержания. Поэтому, передвижение в переходном режиме скушает гораздо больше топлива и в этом случае тоже. А после его преодоления, излишки газа следует сбросить и перейти в крейсерский режим.

Если же вы планируете купить надувную лодку из ПВХ для рыбалки с лодочным электромотором, как основным двигателем, то выбирайте модели без вклеенного транца. Плоскость вклеенного  транца, уходящая под воду — это глиссирующая геометрия лодки. Такой транец будет создавать сильное разряжение за кормой лодки, которое будет в прямом смысле, тянуть ее в обратную сторону. Для рыбалки в водоизмещающем режиме лучше купить надувную лодку с навесным транцем.

Общеизвестные расчеты для выхода на глиссирование — 1л.с. двигателя на 25 кг водоизмещения (общего веса лодки с мотором, шкипером, спиннингом, пивом и собакой) . При увеличении килеватости лодки, вес на лошадь придется снизить до 22 — 20 кг.

Это приблизительный расчет. Многое зависит от конструкции лодки, плотности воды, настройки лодочного мотора, правильной развесовки и грамотных конструкторов. К примеру, на надувную лодку ПВХ, следует устанавливать лодочный мотор заведомо большей мощности, нежели на пластиковый корпус.

Помимо всего прочего, глиссирующие корпуса имеют продольные и поперечные реданы — уступы на днище лодки, для уменьшения смачиваемой поверхности и отсечения излишков воды, транцевые пластины — для стабилизации лодки и снижения излишнего дифферента и прочие ухищрения.

Грамотно спроектированный глиссирующий корпус, даже не только корпус, а вся лодка целиком, имеет очень высокую мореходность, скорость и безопасность. Кроме того, от этого зависит и экономичность лодочного  мотора, что на мощных больших катерах является довольно актуальным.

Михаил Сафронов, для журнала GoodBoating.ru
Смотрите также: